Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Heliyon ; 9(6): e16847, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: covidwho-20230952

RESUMO

The ongoing coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused millions of cases of infections, leading to a global health emergency. The SARS-CoV-2 spike (S) protein plays the most important role in viral infection, and S1 subunit and its receptor-binding domain (RBD) are widely considered the most attractive vaccine targets. The RBD is highly immunogenic and its linear epitopes are important for vaccine development and therapy, but linear epitopes on the RBD have rarely been reported. In this study, 151 mouse monoclonal antibodies (mAbs) against the SARS-CoV-2 S1 protein were characterized and used to identify epitopes. Fifty-one mAbs reacted with eukaryotic SARS-CoV-2 RBD. Sixty-nine mAbs reacted with the S proteins of Omicron variants B.1.1.529 and BA.5, indicating their potential as rapid diagnostic materials. Three novel linear epitopes of RBD, R6 (391CFTNVYADSFVIRGD405), R12 (463PFERDISTEIYQAGS477), and R16 (510VVVLSFELLHAPAT523), were identified; these were highly conserved in SARS-CoV-2 variants of concern and could be detected in the convalescent serum of COVID-19 patients. From pseudovirus neutralization assays, some mAbs including one detecting R12 were found to possess neutralizing activity. Together, from the reaction of mAbs with eukaryotic RBD (N501Y), RBD (E484K), and S1 (D614G), we found that a single amino acid mutation in the SARS-CoV-2 S protein may cause a structural alteration, exerting substantial impact on mAb recognition. Our results could, therefore, help us better understand the function of the SARS-CoV-2 S protein and develop diagnostic tools for COVID-19.

2.
Antiviral Res ; 209: 105509, 2023 01.
Artigo em Inglês | MEDLINE | ID: covidwho-2165064

RESUMO

Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a threat to global public health, underscoring the urgent need for the development of preventive and therapeutic measures. The spike (S) protein of SARS-CoV-2, which mediates receptor binding and subsequent membrane fusion to promote viral entry, is a major target for current drug development and vaccine design. The S protein comprises a large N-terminal extracellular domain, a transmembrane domain, and a short cytoplasmic tail (CT) at the C-terminus. CT truncation of the S protein has been previously reported to promote the infectivity of SARS-CoV and SARS-CoV-2 pseudoviruses. However, the underlying molecular mechanism has not been precisely elucidated. In addition, the CT of various viral membrane glycoproteins play an essential role in the assembly of virions, yet the role of the S protein CT in SARS-CoV-2 infection remains unclear. In this study, through constructing a series of mutations of the CT of the S protein and analyzing their impact on the packaging of the SARS-CoV-2 pseudovirus and live SARS-CoV-2 virus, we identified V1264L1265 as a new intracellular targeting motif in the CT of the S protein, that regulates the transport and subcellular localization of the spike protein through the interactions with cytoskeleton and vesicular transport-related proteins, ARPC3, SCAMP3, and TUBB8, thereby modulating SARS-CoV-2 pseudovirus and live SARS-CoV-2 virion assembly. Either disrupting the V1264L1265 motif or reducing the expression of ARPC3, SCAMP3, and TUBB8 significantly repressed the assembly of the live SARS-CoV-2 virion, raising the possibility that the V1264L1265 motif and the host responsive pathways involved could be new drug targets for the treatment of SARS-CoV-2 infection. Our results extend the understanding of the role played by the S protein CT in the assembly of pseudoviruses and live SARS-CoV-2 virions, which will facilitate the application of pseudoviruses to the study of SARS-CoV-2 and provide potential strategies for the treatment of SARS-CoV-2 infection.


Assuntos
COVID-19 , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Humanos , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus , Sequência de Aminoácidos , Tubulina (Proteína)/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo
3.
Viruses ; 14(5)2022 04 21.
Artigo em Inglês | MEDLINE | ID: covidwho-1879492

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), especially emerging variants, poses an increased threat to global public health. The significant reduction in neutralization activity against the variants such as B.1.351 in the serum of convalescent patients and vaccinated people calls for the design of new potent vaccines targeting the emerging variant. However, since most vaccines approved and in clinical trials are based on the sequence of the original SARS-CoV-2 strain, the immunogenicity and protective efficacy of vaccines based on the B.1.351 variant remain largely unknown. In this study, we evaluated the immunogenicity, induced neutralization activity, and protective efficacy of wild-type spike protein nanoparticle (S-2P) and mutant spike protein nanoparticle (S-4M-2P) carrying characteristic mutations of B.1.351 variant in mice. Although there was no significant difference in the induction of spike-specific IgG responses in S-2P- and S-4M-2P-immunized mice, neutralizing antibodies elicited by S-4M-2P exhibited noteworthy, narrower breadth of reactivity with SARS-CoV-2 variants compared with neutralizing antibodies elicited by S-2P. Furthermore, the decrease of induced neutralizing antibody breadth at least partly resulted from the amino acid substitution at position 484. Moreover, S-4M-2P vaccination conferred insufficient protection against live SARS-CoV-2 virus infection, while S-2P vaccination gave definite protection against SARS-CoV-2 challenge in mice. Together, our study provides direct evidence that the E484K substitution in a SARS-CoV-2 subunit protein vaccine limited the cross-reactive neutralizing antibody breadth in mice and, more importantly, draws attention to the unfavorable impact of this mutation in spike protein of SARS-CoV-2 variants on the induction of potent neutralizing antibody responses.


Assuntos
Anticorpos Neutralizantes , Vacinas contra COVID-19 , COVID-19 , Reações Cruzadas , Glicoproteína da Espícula de Coronavírus , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/genética , Vacinas contra COVID-19/imunologia , Camundongos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/imunologia
4.
Front Immunol ; 12: 664619, 2021.
Artigo em Inglês | MEDLINE | ID: covidwho-1325524

RESUMO

Recent studies have highlighted observations regarding re-tested positivity (RP) of SARS-CoV-2 RNA in discharged COVID-19 patients, however, the immune mechanisms underlying SARS-CoV-2 RNA RP in immunocompetent patients remain elusive. Herein, we describe the case of an immunocompetent COVID-19 patient with moderate symptoms who was twice re-tested as positive for SARS-CoV-2 RNA, and the period between first and third viral RNA positivity was 95 days, longer than previously reported (18-25 days). The chest computed tomography findings, plasma anti-SARS-CoV-2 antibody, neutralizing antibodies (NAbs) titer, and whole blood transcriptic characteristics in the viral RNA RP patient and other COVID-19 patients were analyzed. During the SARS-CoV-2 RNA RP period, new lung lesions were observed. The COVID-19 patient with viral RNA RP had delayed seroconversion of anti-spike/receptor-binding domain (RBD) IgA antibody and NAbs and were accompanied with disappearance of the lung lesions. Further experimental data validated that NAbs titer was significantly associated with anti-RBD IgA and IgG, and anti-spike IgG. The RP patient had lower interferon-, T cells- and B cell-related genes expression than non-RP patients with mild-to-moderate symptoms, and displayed lower cytokines and chemokines gene expression than severe patients. Interestingly, the RP patient had low expression of antigen presentation-related genes and low B cell counts which might have contributed to the delayed anti-RBD specific antibody and low CD8+ cell response. Collectively, delayed antigen presentation-related gene expression was found related to delayed adaptive immune response and contributed to the SARS-CoV-2 RNA RP in this described immunocompetent patient.


Assuntos
COVID-19/imunologia , COVID-19/virologia , RNA Viral/isolamento & purificação , Imunidade Adaptativa , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , COVID-19/diagnóstico , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Perfilação da Expressão Gênica , Humanos , Imunidade Inata , Masculino , Pessoa de Meia-Idade , Fosfoproteínas/imunologia , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , Soroconversão , Glicoproteína da Espícula de Coronavírus/imunologia
5.
Vaccine ; 39(16): 2280-2287, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: covidwho-1118711

RESUMO

The emergence of the global Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) pandemic underscores the importance of the rapid development of a non-invasive vaccine that can be easily administered. A vaccine administered by nasal delivery is endowed with such characteristics against respiratory viruses. In this study, we generated a recombinant SARS-CoV-2 receptor-binding domain (RBD)-based subunit vaccine. Mice were immunized via intranasal inoculation, microneedle-intradermal injection, or intramuscular injection, after which the RBD-specific immune responses were compared. Results showed that when administrated intranasally, the vaccine elicited a robust systemic humoral immunity with high titers of IgG antibodies and neutralizing antibodies as well as a significant mucosal immunity. Besides, antigen-specific T cell responses were also analyzed. These results indicated that the non-invasive intranasal administration should be explored for the future SARS-CoV-2 vaccine design.


Assuntos
Administração Intranasal , Anticorpos Antivirais/sangue , Vacinas contra COVID-19/administração & dosagem , COVID-19/prevenção & controle , Animais , Anticorpos Neutralizantes/sangue , Imunoglobulina G/sangue , Camundongos , Camundongos Endogâmicos BALB C , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas Sintéticas/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA